In a path-breaking innovation in the wake of the Covid-19 pandemic, the Mumbai-based Wadhwani Institute for Artificial Intelligence has secured a US patent for its AI-based tool ‘Cough against Covid’.
The tool can effectively screen for Covid-19, based on cough sounds.
In what could be a real breakthrough for more efficient, effective Covid-19 testing, the AI tool can even identify asymptomatic individuals – those who have the infection but without a cough or any obvious symptoms.
The results are instantaneous and the tool works on a basic smartphone.
It does not require an app, special device or trained personnel.
Commenting on this breakthrough, Dr. Rahul Panicker, Chief Research and Innovation Officer,Wadhwani Institute for Artificial Intelligence, said: “Testing for Covid-19 has been a major challenge since the start of the pandemic. This prompted us to think about how we could use AI to develop a non-invasive Covid-19 testing tool that was affordable and accessible to a large population. After months of hard work, we are proud to present our patented Cough against Covid AI tool that can identify both symptomatic and asymptomatic individuals.”
He said that it will help health care and civic authorities speed up testing and also focus their resources better, by filtering out patients with Covid-19-like symptoms but without the infection.
“We will continue to work towards making it accessible to those who need it most. We also plan to share our research widely so that people around the world can benefit from the tool,” he added.
Having achieved a balance between high sensitivity and low specificity, Wadhwani’s AI tool can be used as a Covisd-19 triaging tool. It is expected that the tool can increase the testing capacity of a healthcare system by 43% without additional supplies, trained personnel, or physical infrastructure (at assumed disease prevalence of 5%).
The group partnered with Norway India Partnership Initiative (NIPI), Doctors for you (DFY), AIIMS Jodhpur, Municipal Corporation of Greater Mumbai (MCGM) to collect data from 3,621 individuals across 4 states including Bihar, Odisha, Rajasthan and Maharashtra. Of these, 2,001 tested positive for Covid-19.
They also used open-source non-Covid cough datasets to obtain 31,909 sounds segments, of which 27,116 were non-cough respiratory sounds (wheezes, crackles or breathing) or human speech, and 4,793 were cough sounds. An end-to-end deep
Convolutional Neural Networks-based framework was used to ingest audio samples and predict a binary classification label, which would indicate the probability of the presence of Covid-19.
The findings demonstrated that solicited-cough sounds collected over a phone can be analysed by the Cough against Covid AI tool and provide a statistically significant signal that is indicative of Covid-19 status. This was true for asymptomatic patients as well.