<p>The controversy over genetically modified crops has long focused on largely unsubstantiated fears that they are unsafe to eat. But an extensive examination by The New York Times indicates that the debate has missed a more basic problem — genetic modification in the United States and Canada has not accelerated increases in crop yields or led to an overall reduction in the use of chemical pesticides.<br /><br /></p>.<p>The promise of genetic modification was twofold: By making crops immune to the effects of weedkillers and inherently resistant to many pests, they would grow so robustly that they would become indispensable to feeding the world’s growing population, while also requiring fewer applications of sprayed pesticides.<br /><br />Twenty years ago, Europe largely rejected genetic modification at the same time the United States and Canada were embracing it. Comparing results on the two continents, using independent data as well as academic and industry research, shows how the technology has fallen short of the promise.<br /><br />An analysis by The Times using UN data showed that the US and Canada have gained no discernible advantage in yields — food per acre — when measured against Western Europe, a region with comparably modernised agricultural producers like France and Germany. Also, a recent National Academy of Sciences report found that “there was little evidence” that the introduction of genetically modified crops in the US had led to yield gains beyond those seen in conventional crops.<br /><br />At the same time, herbicide use has increased in the US, even as major crops like corn, soybeans and cotton have been converted to modified varieties. And the US has fallen behind Europe’s biggest producer, France, in reducing the overall use of pesticides, which includes both herbicides and insecticides.<br /><br />One measure, contained in data from the US Geological Survey, shows the stark difference in the use of pesticides. Since genetically modified crops were introduced in the US two decades ago for crops like corn, cotton and soybeans, the use of toxins that kill insects and fungi has fallen by a third, but the spraying of herbicides, which are used in much higher volumes, has risen 21%. By contrast, in France, use of insecticides and fungicides has fallen by a far greater percentage — 65% — and herbicide use has decreased as well, by 36%.<br /><br />The industry is winning on both ends — because the same companies make and sell both the genetically modified plants and the poisons. Driven by these sales, the combined market capitalisations of Monsanto, the largest seed company, and Syngenta, the Swiss pesticide giant, have grown more than sixfold in the last decade and a half. The two companies are separately involved in merger agreements that would lift their new combined values to more than $100 billion each.<br /><br />When presented with the findings, Robert T Fraley, chief technology officer at Monsanto, said The Times had cherry-picked its data to reflect poorly on the industry. “Every farmer is a smart businessperson, and a farmer is not going to pay for a technology if they don’t <br />think it provides a major benefit,” he said. “Biotech tools have clearly driven yield increases enormously.”<br /><br />Regarding the use of herbicides, in a statement, Monsanto said, “While overall herbicide use may be increasing in some areas where farmers are following best practices to manage emerging weed issues, farmers in other areas with different circumstances may have decreased or maintained their herbicide usage.”<br /><br />Figures from the US Department of Agriculture show herbicide use skyrocketing in soybeans, a leading GM crop, growing 2.5 times in the last two decades, at a time when planted acreage of the crop grew less than a third. Use in corn was trending downward even before the introduction of GM crops, but then nearly doubled from 2002 to 2010, before levelling off. Weed resistance problems in such crops have pushed overall usage up.<br /><br />To some, this outcome was predictable. The whole point of engineering bug-resistant plants “was to reduce insecticide use, and it did,” said Joseph Kovach, a retired Ohio State University researcher who studied the environmental risks of pesticides. But the goal of herbicide-resistant seeds was to “sell more product,” he said — more herbicide.<br /><br />Farmers with crops overcome by weeds, or a particular pest or disease, can understandably be GM evangelists. “It’s silly bordering on ridiculous to turn our backs on a technology that has so much to offer,” said Duane Grant, chairman of Amalgamated Sugar Co, a cooperative of more than 750 sugar beet farmers in the Northwest. He says crops resistant to Roundup, Monsanto’s most popular weedkiller, saved his cooperative.<br />Feeding the world<br /><br />With the world’s population expected to reach nearly 10 billion by 2050, Monsanto has long held out its products as a way “to help meet the food demands of these added billions,” as it said in a 1995 statement. That remains an industry mantra.<br /><br />“It’s absolutely key that we keep innovating,” said Kurt Boudonck, who manages Bayer’s sprawling North Carolina greenhouses. “With the current production practices, we are not going to be able to feed that amount of people.”<br /><br />But a broad yield advantage has not emerged. The Times looked at regional data from the UN Food and Agriculture Organisation, comparing main genetically modified crops in the US and Canada with varieties grown in Western Europe, a grouping used by the agency that comprises seven nations, including the two largest agricultural producers, France and Germany.<br /><br />For rapeseed, a variant of which is used to produce canola oil, The Times compared Western Europe with Canada, the largest producer, over three decades, including a period well before the introduction of GM crops.<br /><br />Despite rejecting genetically modified crops, Western Europe maintained a lead over Canada in yields. While that is partly because different varieties are grown in the two regions, the trend lines in the relative yields have not shifted in Canada’s favour since the introduction of GM crops, the data show.<br /><br />For corn, The Times compared the US with Western Europe. Over three decades, the trend lines between the two barely deviate. And sugar beets, a major source of sugar, have shown stronger yield growth recently in Western Europe than the US, despite the dominance of genetically modified varieties over the last decade.<br /><br />Jack Heinemann, a professor at the University of Canterbury in New Zealand, did a pioneering 2013 study comparing trans-Atlantic yield trends, using UN data. Western Europe, he said, “hasn’t been penalised in any way for not making genetic engineering one of its biotechnology choices.”<br /><br />Biotech executives suggested making narrower comparisons. Fraley of Monsanto highlighted data comparing yield growth in Nebraska and France, while an official at Bayer suggested Ohio and France. These comparisons can be favourable to the industry, while comparing other individual US states can be unfavourable.<br /><br />Michael Owen, a weed scientist at Iowa State University, said that while the industry had long said GMOs would “save the world,” they still “haven’t found the mythical yield gene.”<br /><br /></p>
<p>The controversy over genetically modified crops has long focused on largely unsubstantiated fears that they are unsafe to eat. But an extensive examination by The New York Times indicates that the debate has missed a more basic problem — genetic modification in the United States and Canada has not accelerated increases in crop yields or led to an overall reduction in the use of chemical pesticides.<br /><br /></p>.<p>The promise of genetic modification was twofold: By making crops immune to the effects of weedkillers and inherently resistant to many pests, they would grow so robustly that they would become indispensable to feeding the world’s growing population, while also requiring fewer applications of sprayed pesticides.<br /><br />Twenty years ago, Europe largely rejected genetic modification at the same time the United States and Canada were embracing it. Comparing results on the two continents, using independent data as well as academic and industry research, shows how the technology has fallen short of the promise.<br /><br />An analysis by The Times using UN data showed that the US and Canada have gained no discernible advantage in yields — food per acre — when measured against Western Europe, a region with comparably modernised agricultural producers like France and Germany. Also, a recent National Academy of Sciences report found that “there was little evidence” that the introduction of genetically modified crops in the US had led to yield gains beyond those seen in conventional crops.<br /><br />At the same time, herbicide use has increased in the US, even as major crops like corn, soybeans and cotton have been converted to modified varieties. And the US has fallen behind Europe’s biggest producer, France, in reducing the overall use of pesticides, which includes both herbicides and insecticides.<br /><br />One measure, contained in data from the US Geological Survey, shows the stark difference in the use of pesticides. Since genetically modified crops were introduced in the US two decades ago for crops like corn, cotton and soybeans, the use of toxins that kill insects and fungi has fallen by a third, but the spraying of herbicides, which are used in much higher volumes, has risen 21%. By contrast, in France, use of insecticides and fungicides has fallen by a far greater percentage — 65% — and herbicide use has decreased as well, by 36%.<br /><br />The industry is winning on both ends — because the same companies make and sell both the genetically modified plants and the poisons. Driven by these sales, the combined market capitalisations of Monsanto, the largest seed company, and Syngenta, the Swiss pesticide giant, have grown more than sixfold in the last decade and a half. The two companies are separately involved in merger agreements that would lift their new combined values to more than $100 billion each.<br /><br />When presented with the findings, Robert T Fraley, chief technology officer at Monsanto, said The Times had cherry-picked its data to reflect poorly on the industry. “Every farmer is a smart businessperson, and a farmer is not going to pay for a technology if they don’t <br />think it provides a major benefit,” he said. “Biotech tools have clearly driven yield increases enormously.”<br /><br />Regarding the use of herbicides, in a statement, Monsanto said, “While overall herbicide use may be increasing in some areas where farmers are following best practices to manage emerging weed issues, farmers in other areas with different circumstances may have decreased or maintained their herbicide usage.”<br /><br />Figures from the US Department of Agriculture show herbicide use skyrocketing in soybeans, a leading GM crop, growing 2.5 times in the last two decades, at a time when planted acreage of the crop grew less than a third. Use in corn was trending downward even before the introduction of GM crops, but then nearly doubled from 2002 to 2010, before levelling off. Weed resistance problems in such crops have pushed overall usage up.<br /><br />To some, this outcome was predictable. The whole point of engineering bug-resistant plants “was to reduce insecticide use, and it did,” said Joseph Kovach, a retired Ohio State University researcher who studied the environmental risks of pesticides. But the goal of herbicide-resistant seeds was to “sell more product,” he said — more herbicide.<br /><br />Farmers with crops overcome by weeds, or a particular pest or disease, can understandably be GM evangelists. “It’s silly bordering on ridiculous to turn our backs on a technology that has so much to offer,” said Duane Grant, chairman of Amalgamated Sugar Co, a cooperative of more than 750 sugar beet farmers in the Northwest. He says crops resistant to Roundup, Monsanto’s most popular weedkiller, saved his cooperative.<br />Feeding the world<br /><br />With the world’s population expected to reach nearly 10 billion by 2050, Monsanto has long held out its products as a way “to help meet the food demands of these added billions,” as it said in a 1995 statement. That remains an industry mantra.<br /><br />“It’s absolutely key that we keep innovating,” said Kurt Boudonck, who manages Bayer’s sprawling North Carolina greenhouses. “With the current production practices, we are not going to be able to feed that amount of people.”<br /><br />But a broad yield advantage has not emerged. The Times looked at regional data from the UN Food and Agriculture Organisation, comparing main genetically modified crops in the US and Canada with varieties grown in Western Europe, a grouping used by the agency that comprises seven nations, including the two largest agricultural producers, France and Germany.<br /><br />For rapeseed, a variant of which is used to produce canola oil, The Times compared Western Europe with Canada, the largest producer, over three decades, including a period well before the introduction of GM crops.<br /><br />Despite rejecting genetically modified crops, Western Europe maintained a lead over Canada in yields. While that is partly because different varieties are grown in the two regions, the trend lines in the relative yields have not shifted in Canada’s favour since the introduction of GM crops, the data show.<br /><br />For corn, The Times compared the US with Western Europe. Over three decades, the trend lines between the two barely deviate. And sugar beets, a major source of sugar, have shown stronger yield growth recently in Western Europe than the US, despite the dominance of genetically modified varieties over the last decade.<br /><br />Jack Heinemann, a professor at the University of Canterbury in New Zealand, did a pioneering 2013 study comparing trans-Atlantic yield trends, using UN data. Western Europe, he said, “hasn’t been penalised in any way for not making genetic engineering one of its biotechnology choices.”<br /><br />Biotech executives suggested making narrower comparisons. Fraley of Monsanto highlighted data comparing yield growth in Nebraska and France, while an official at Bayer suggested Ohio and France. These comparisons can be favourable to the industry, while comparing other individual US states can be unfavourable.<br /><br />Michael Owen, a weed scientist at Iowa State University, said that while the industry had long said GMOs would “save the world,” they still “haven’t found the mythical yield gene.”<br /><br /></p>