<p class="title">The most common white pigment used in everyday products ranging from paint to candies may be linked to diabetes, a study has found.</p>.<p class="bodytext">Researchers from the University of Texas at Austin (UT Austin) in the US found that crystalline particles of titanium dioxide were found in pancreas specimens with Type 2 diabetes, suggesting that exposure to the white pigment is associated with the disease.</p>.<p class="bodytext">Titanium dioxide (TiO2) is not a known constituent of any normal human tissue. Our body normally has plenty of salts and compounds of metallic elements such as sodium, potassium, calcium, iron and magnesium, as well as lesser amounts of other metallic elements like cobalt or molybdenum but not of titanium.</p>.<p class="bodytext">The team examined 11 pancreas specimens, eight of which were from donors who had type 2 diabetes and three from donors who did not.</p>.<p class="bodytext">Whereas the three non-diabetic pancreatic tissue specimens contained no detectable TiO2 crystals, the crystals were detected in all of the eight type 2 diabetes pancreatic tissue specimens.</p>.<p class="bodytext">Researchers found more than 200 million TiO2 crystallites per gramme of TiO2 particles in the specimens from type 2 diabetes donors but not in the three specimens from non-diabetic donors.</p>.<p class="bodytext">"Our initial findings raise the possibility that type 2 diabetes could be a chronic crystal-associated inflammatory disease of the pancreas, similar to chronic crystal-caused inflammatory diseases of the lung such as silicosis and asbestosis," said Adam Heller, a professor at UT Austin.</p>.<p class="bodytext">In the mid-20th century, titanium dioxide pigment replaced highly toxic lead-based pigments. It became the most commonly used white pigment in paints and in foods, medications, toothpaste, cosmetics, plastics and paper.</p>.<p class="bodytext">As a result, annual production of titanium dioxide has increased by 4 million tonnes since the 1960s.</p>.<p class="bodytext">According to the World Health Organisation, the number of people with diabetes has quadrupled during the past four decades, affecting about 425 million people, with type 2 diabetes comprising the majority of recorded cases.</p>.<p class="bodytext">Although obesity and an aging population are still considered major factors leading to a rise in type 2 diabetes cases worldwide, the study suggests that increased use of titanium dioxide may also be linked to the rapid rise in the number of people suffering from the disease.</p>.<p class="bodytext">"The increased use of titanium dioxide over the last five decades could be a factor in the Type 2 diabetes epidemic," Heller said.</p>.<p class="bodytext">"The dominant T2D-associated pancreatic particles consist of TiO2 crystals, which are used as a colorant in foods, medications and indoor wall paint, and they are transported to the pancreas in the bloodstream," he said.</p>.<p class="bodytext">"The study raises the possibility that humanity's increasing use of TiO2 pigment accounts for part of the global increase in the incidence of T2D," he added.</p>.<p class="bodytext">Given the wide-reaching implications of his findings, Heller is keen to repeat the study using a larger sample. </p>
<p class="title">The most common white pigment used in everyday products ranging from paint to candies may be linked to diabetes, a study has found.</p>.<p class="bodytext">Researchers from the University of Texas at Austin (UT Austin) in the US found that crystalline particles of titanium dioxide were found in pancreas specimens with Type 2 diabetes, suggesting that exposure to the white pigment is associated with the disease.</p>.<p class="bodytext">Titanium dioxide (TiO2) is not a known constituent of any normal human tissue. Our body normally has plenty of salts and compounds of metallic elements such as sodium, potassium, calcium, iron and magnesium, as well as lesser amounts of other metallic elements like cobalt or molybdenum but not of titanium.</p>.<p class="bodytext">The team examined 11 pancreas specimens, eight of which were from donors who had type 2 diabetes and three from donors who did not.</p>.<p class="bodytext">Whereas the three non-diabetic pancreatic tissue specimens contained no detectable TiO2 crystals, the crystals were detected in all of the eight type 2 diabetes pancreatic tissue specimens.</p>.<p class="bodytext">Researchers found more than 200 million TiO2 crystallites per gramme of TiO2 particles in the specimens from type 2 diabetes donors but not in the three specimens from non-diabetic donors.</p>.<p class="bodytext">"Our initial findings raise the possibility that type 2 diabetes could be a chronic crystal-associated inflammatory disease of the pancreas, similar to chronic crystal-caused inflammatory diseases of the lung such as silicosis and asbestosis," said Adam Heller, a professor at UT Austin.</p>.<p class="bodytext">In the mid-20th century, titanium dioxide pigment replaced highly toxic lead-based pigments. It became the most commonly used white pigment in paints and in foods, medications, toothpaste, cosmetics, plastics and paper.</p>.<p class="bodytext">As a result, annual production of titanium dioxide has increased by 4 million tonnes since the 1960s.</p>.<p class="bodytext">According to the World Health Organisation, the number of people with diabetes has quadrupled during the past four decades, affecting about 425 million people, with type 2 diabetes comprising the majority of recorded cases.</p>.<p class="bodytext">Although obesity and an aging population are still considered major factors leading to a rise in type 2 diabetes cases worldwide, the study suggests that increased use of titanium dioxide may also be linked to the rapid rise in the number of people suffering from the disease.</p>.<p class="bodytext">"The increased use of titanium dioxide over the last five decades could be a factor in the Type 2 diabetes epidemic," Heller said.</p>.<p class="bodytext">"The dominant T2D-associated pancreatic particles consist of TiO2 crystals, which are used as a colorant in foods, medications and indoor wall paint, and they are transported to the pancreas in the bloodstream," he said.</p>.<p class="bodytext">"The study raises the possibility that humanity's increasing use of TiO2 pigment accounts for part of the global increase in the incidence of T2D," he added.</p>.<p class="bodytext">Given the wide-reaching implications of his findings, Heller is keen to repeat the study using a larger sample. </p>